Emerging Strategies for the Management of Atherogenic Dyslipidaemia

Login or register to view PDF.
Creative Commons Licence
 
Disclosure
MDS sits on the scientific advisory boards of Amgen and Regeneron. AA has no conflicts of interest to declare.
Correspondence
Michael D Shapiro, Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157, US. E: mdshapir@wakehealth.edu
Received date
29 October 2019
Accepted date
29 October 2019
DOI
https://doi.org/10.15420/ecr.2019.16
Open access
This work is open access under the CC-BY-NC 4.0 License which allows users to copy, redistribute and make derivative works for non-commercial purposes, provided the original work is cited correctly.

Atherogenic dyslipidaemia encompasses a broad variety of lipid phenotypes. While LDL cholesterol is a well-known risk factor for atherosclerotic cardiovascular disease (ASCVD), there are additional atherogenic lipoproteins that may be targeted to further reduce ASCVD risk.

In their comprehensive review, Lorenzatti and Toth emphasise that, even when LDL cholesterol levels are optimised, ASCVD risk remains in a substantial subset of individuals.1 Some of this residual cardiovascular risk is due to suboptimal levels of other atherogenic lipids and lipoproteins, including triglycerides, HDL cholesterol, non-HDL cholesterol (total cholesterol minus HDL cholesterol), and apolipoprotein B (ApoB).

The 2018 American College of Cardiology/American Heart Association (ACC/AHA) Multi-Society Cholesterol Guideline and the recent 2019 European Society of Cardiology (ESC) guideline for the management of dyslipidaemias prioritise LDL cholesterol as the primary target of lipid-lowering therapy, principally with the use of maximally tolerated statin therapy.2,3 Both guidelines emphasise intense (≥50%) LDL cholesterol lowering and define specific values of LDL cholesterol to trigger additional recommendations. Moreover, if adequate LDL cholesterol reduction is not achieved despite lifestyle modifications and maximally tolerated statin therapy, consideration of non-statin therapy is warranted.

There are several key differences between the European and American guidelines, the first of which lies in the definition and treatment thresholds for very high risk patients. Table 1 outlines the similarities and differences in the definition of very high risk patients between the ACC/AHA and ESC guidelines. Second, in a departure from the ACC/AHA guideline, which recommends an LDL cholesterol threshold of 1.8 mmol/l before considering non-statin therapies, the ESC guideline recommends treating to a more aggressive therapeutic threshold of 1.42 mmol/l, thereby suggesting that non-statin therapies should be considered even where LDL cholesterol levels are 1.42–1.81 mmol/l.3 Finally, regarding several high-risk medical conditions, known to be risk-enhancing factors or risk modifiers, there are notable differences between the two guideline documents. As well as sharing many of the risk-enhancing factors described in the ACC/AHA guideline, the ESC guideline includes social deprivation, (central) obesity, physical inactivity, psychosocial stress, psychiatric disorders, HIV treatments, AF, left ventricular hypertrophy, chronic kidney disease, obstructive sleep apnoea and non-alcoholic fatty liver disease as risk modifiers.3,4

Both guidelines consider atherogenic lipoproteins beyond LDL cholesterol. Persistently elevated triglycerides (≥4.53 mmol/l) and elevated ApoB concentrations (≥3.37 mmol/l) are considered risk-enhancing factors in the 2018 ACC/AHA guideline. Their presence in intermediate risk or select borderline risk patients should inform the clinician-patient decision and facilitate shared decision making with regards to initiating or intensifying statin therapy.2 The ESC guideline recommends secondary goals for both non-HDL cholesterol (<2.20, 2.60, and 3.37 mmol/l) and ApoB (<1.68, 2.07, and 2.60 mmol/l) in individuals at very high, high, and moderate risk respectively. While no specific thresholds have been set for triglycerides, a triglyceride concentration <3.89 mmol/l is considered reasonable.3

Beyond the atherogenic lipoproteins already mentioned, there is another atherogenic biomarker that merits discussion. The association between elevated plasma concentrations of lipoprotein(a) [Lp(a)] and ASCVD is well established and there may be an emerging role for the assessment and treatment of elevated Lp(a) in clinical practice.5–10 Lp(a) levels ≥1.3 mmol/l or ≥125 nmol/l are considered a risk-enhancing factor in the 2018 ACC/AHA guideline and the presence of elevated levels can be used to reclassify ASCVD risk.2

Currently, there are no evidence-based therapies to target elevated Lp(a) lowering, although some experts have advocated the potential use of niacin and/or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, which can modestly reduce plasma concentrations of Lp(a).11–13 An antisense oligonucleotide-based therapy directed at apolipoprotein(a) is in the late stages of development and is poised to be tested within the context of a randomised cardiovascular outcomes trial. A recent Phase IIB study demonstrated reductions of up to 80% in Lp(a) with this therapy.14 Beyond targeting Lp(a), a number of additional novel therapeutics for the treatment of atherogenic dyslipidaemia are on the horizon (Table 2).

While LDL cholesterol lowering has, understandably, remained the mainstay in the primary and secondary prevention of ASCVD, a comprehensive assessment of all atherogenic lipoproteins is merited. Mitigation of ASCVD risk should be targeted in the following manner: lifestyle modifications; targeting and surpassing LDL cholesterol therapeutic thresholds; and selective evaluation and treatment of additional measures of the atherogenic lipoprotein burden, including triglycerides, non-HDL cholesterol, ApoB and Lp(a).

Classifying Patients at Very High Risk

Open in new tab
Open ppt

Emerging Therapies for Atherogenic Dyslipidaemia

Open in new tab
Open ppt

The key to managing atherogenic dyslipidaemia lies in emphasising the foundational importance of therapeutic lifestyle changes and the apt usage of pharmacological agents. Fortunately, it appears that the effective therapeutic armamentarium is likely to increase. Meanwhile, we eagerly await the results of cardiovascular outcome studies testing several novel lipid-lowering therapeutics that have the potential to revolutionise the pharmacological management of atherogenic dyslipidaemia.

References
  1. Lorenzatti AJ, Toth PP. New perspectives on atherogenic dyslipidaemia and cardiovascular disease. Eur Cardiol 2020;15:e04.
    Crossref
  2. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;139:e1082–143.
    Crossref | PubMed
  3. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 2019;290:140–205.
    Crossref | PubMed
  4. Agarwala A, Liu J, Ballantyne CM, Virani SS. The use of risk enhancing factors to personalize ASCVD risk assessment: evidence and recommendations from the 2018 AHA/ACC Multi-Society Cholesterol Guidelines. Curr Cardiol Risk Rep 2019;13:18.
    Crossref
  5. Burgess S, Ference BA, Staley JR, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol 2018;3:619–27.
    Crossref | PubMed
  6. Cook NR, Mora S, Ridker PM. Lipoprotein(a) and cardiovascular risk prediction among women. J Am Coll Cardiol 2018;72:287–96.
    Crossref | PubMed
  7. Erqou S, Kaptoge S, Perry PL, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 2009;302:412–23.
    Crossref | PubMed
  8. Verbeek R, Hoogeveen RM, Langsted A, et al. Cardiovascular disease risk associated with elevated lipoprotein(a) attenuates at low low-density lipoprotein cholesterol levels in a primary prevention setting. Eur Heart J 2018;39:2589–96.
    Crossref | PubMed
  9. Virani SS, Brautbar A, Davis BC, et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2012;125:241–9.
    Crossref | PubMed
  10. Wilson DP, Jacobson TA, Jones PH, et al. Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. A scientific statement from the National Lipid Association. J Clin Lipidol 2019;13:374–92.
    Crossref | PubMed
  11. Gaudet D, Kereiakes DJ, McKenney JM, et al. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol 2014;114:711–5.
    Crossref | PubMed
  12. O’Donoghue ML, Fazio S, Giugliano RP, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation 2019;139:1483–92.
    Crossref | PubMed
  13. Warden BA, Minnier J, Watts GF, Fazio S, Shapiro MD. Impact of PCSK9 inhibitors on plasma lipoprotein(a) concentrations with or without a background of niacin therapy. J Clin Lipidol 2019;13:580–5.
    Crossref | PubMed
  14. Langsted A, Nordestgaard BG. Antisense oligonucleotides targeting lipoprotein(a). Curr Atheroscler Rep 2019;21:30.
    Crossref | PubMed
  15. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24:987–1003.
    Crossref | PubMed
  16. Ballantyne CM, Banach M, Mancini GBJ, et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: a randomized, placebo-controlled study. Atherosclerosis 2018;277:195–203.
    Crossref | PubMed
  17. Ballantyne CM, Laufs U, Ray KK, et al. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol 2019:2047487319864671.
    Crossref | PubMed
  18. Ray KK, Bays HE, Catapano AL, et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol N Engl J Med 2019;380:1022–32.
    Crossref | PubMed
  19. Laufs U, Banach M, Mancini GBJ, et al. Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance. J Am Heart Assoc 2019;8:e011662.
    Crossref | PubMed
  20. Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med 2017;376:1430–40.
    Crossref | PubMed
  21. Ray KK, Stoekenbroek RM, Kallend D, et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins. Circulation 2018;138:1304–16.
    Crossref | PubMed
  22. ClinicalTrials.gov. Inclisiran for subjects With ACSVD or ACSVD-risk equivalents and elevated low-density lipoprotein cholesterol (ORION-11). https://clinicaltrials.gov/ct2/show/NCT03400800 (accessed 15 December 2019).
  23. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 2014;383:60–68.
    Crossref | PubMed
  24. ClinicalTrials.gov. Phase 2 study of ISIS 681257 (AKCEA-APO(a)-LRx) in patients with hyperlipoproteinemia(a) and cardiovascular disease. https://clinicaltrials.gov/ct2/show/NCT03070782 (accessed 15 December 2019).
  25. Alexander VJ, Xia S, Hurh E, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J 2019;40:2785–96.
    Crossref | PubMed
  26. Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 2015;373:438–47.
    Crossref | PubMed
  27. Schmitz J, Gouni-Berthold I. APOC-III antisense oligonucleotides: a new option for the treatment of hypertriglyceridemia. Curr Med Chem 2018;25:1567–76.
    Crossref | PubMed
  28. Xu YX, Redon V, Yu H, et al. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol. Atherosclerosis 2018;268:196–206.
    Crossref | PubMed
  29. Graham MJ, Lee RG, Brandt TA, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med 2017;377:222–32.
    Crossref | PubMed
  30. ClinicalTrials.gov. Outcomes study to assess STatin Residual risk reduction with EpaNova in HiGh CV risk patienTs with Hypertriglyceridemia (STRENGTH). https://clinicaltrials.gov/ct2/show/NCT02104817 (accessed 15 December 2019).
  31. Nicholls SJ, Lincoff AM, Bash D, et al. Assessment of omega-3 carboxylic acids in statin-treated patients with high levels of triglycerides and low levels of high-density lipoprotein cholesterol: rationale and design of the STRENGTH trial. Clin Cardiol 2018;41:1281–8.
    Crossref | PubMed
  32. Gusarova V, Alexa CA, Wang Y, et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res. 2015;56:1308–17.
    Crossref | PubMed
  33. Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med 2017;377:211–21.
    Crossref | PubMed
  34. Ahmad Z, Banerjee P, Hamon S, et al. Inhibition of angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation 2019;140:470–486.
    Crossref | PubMed